7,234 research outputs found

    Coherent Single Charge Transport in Molecular-Scale Silicon Nanowire Transistors

    Full text link
    We report low-temperature electrical transport studies of molecule-scale silicon nanowires. Individual nanowires exhibit well-defined Coulomb blockade oscillations characteristic of charge addition to a single nanostructure with length scales up to at least 400 nm. Further studies demonstrate coherent charge transport through discrete single particle quantum levels extending the whole device, and show that the ground state spin configuration follows the Lieb-Mattis theorem. In addition, depletion of the nanowires suggests that phase coherent single-dot characteristics are accessible in a regime where correlations are strong.Comment: 4 pages and 4 figure

    The ATLAS SCT grounding and shielding concept and implementation

    Get PDF
    This paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms. In this paper, following a presentation of the physics requirements, leading to the specifications for the construction of the detector, a detailed description of all its different elements is given. These include civil engineering infrastructures, a huge ultra-high vacuum (UHV) chamber (about 6000 cubic metres), all of the optical components, including high quality mirrors and their seismic isolating suspensions, all of the electronics required to control the interferometer and for signal detection. The expected performances of these different elements are given, leading to an overall sensitivity curve as a function of the incoming gravitational wave frequency. This description represents the detector as built and used in the first data-taking runs. Improvements in different parts have been and continue to be performed, leading to better sensitivities. These will be detailed in a forthcoming paper

    ChPT tests at the NA48 and NA62 experiments at CERN

    Full text link
    The NA48/2 Collaboration at CERN has accumulated unprecedented statistics of rare kaon decays in the Ke4 modes: Ke4(+-) (K±π+πe±νK^\pm \to \pi^+ \pi^- e^\pm \nu) and Ke4(00) (K±π0π0e±νK^\pm \to \pi^0 \pi^0 e^\pm \nu) with nearly one percent background contamination. The detailed study of form factors and branching rates, based on these data, has been completed recently. The results brings new inputs to low energy strong interactions description and tests of Chiral Perturbation Theory (ChPT) and lattice QCD calculations. In particular, new data support the ChPT prediction for a cusp in the π0π0\pi^0\pi^0 invariant mass spectrum at the two charged pions threshold for Ke4(00) decay. New final results from an analysis of about 400 K±π±γγK^\pm \to \pi^\pm \gamma \gamma rare decay candidates collected by the NA48/2 and NA62 experiments at CERN during low intensity runs with minimum bias trigger configurations are presented. The results include a model-independent decay rate measurement and fits to ChPT description.Comment: XIIth International Conference on Heavy Quarks and Leptons 2014, Mainz, German

    Recent NA48/2 and NA62 results

    Full text link
    The NA48/2 Collaboration at CERN has accumulated and analysed unprecedented statistics of rare kaon decays in the Ke4K_{e4} modes: Ke4(+)K_{e4}(+-) (K±π+πe±νK^\pm \to \pi^+ \pi^- e^\pm \nu) and Ke4(00)K_{e4}(00) (K±π0π0e±νK^\pm \to \pi^0 \pi^0 e^\pm \nu) with nearly one percent background contamination. It leads to the improved measurement of branching fractions and detailed form factor studies. New final results from the analysis of 381 K±π±γγK^\pm \to \pi^\pm \gamma \gamma rare decay candidates collected by the NA48/2 and NA62 experiments at CERN are presented. The results include a decay rate measurement and fits to Chiral Perturbation Theory (ChPT) description.Comment: Prepared for the Proceedings of "Moriond QCD and High Energy Interactions. March 22-29 2014." conferenc
    corecore